Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery

نویسنده

  • Sheng S. Zhang
چکیده

Sulfurized polyacrylonitrile (SPAN) is one of the most important sulfurized carbon materials that can potentially be coupled with the carbonaceous anode to fabricate a safe and low cost “all carbon” lithium-ion battery. However, its chemical structure and electrochemical properties have been poorly understood. In this discussion, we analyze the previously published data in combination with our own results to propose a more reasonable chemical structure that consists of short –Sx– chains covalently bonded onto cyclized, partially dehydrogenated, and ribbon-like polyacrylonitrile backbones. The proposed structure fits all previous structural characterizations and explains many unique electrochemical phenomena that were observed from the Li/SPAN cells but have not been understood clearly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfurized Carbon: A Class of Cathode Materials for High Performance Lithium/Sulfur Batteries

*Correspondence: Sheng S. Zhang, Electrochemistry Branch, RDRL-SED-C, Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, USA e-mail: [email protected]; [email protected] Liquid electrolyte lithium/sulfur (Li/S) batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and...

متن کامل

Improving the performance of Lithium-Sulfur Batteries using Sulfur-(TiO2/SiO2) yolk–shell Nanostructure

Lithium-Sulfur (Li-S) batteries are considered as one of the promising candidates for next-generation Li batteries in near future. Although, these batteries are suffering from certain drawbacks such as rapid capacity fading during the charge and discharge process due to the dissolution of polysulfides. In this paper, Sulfur/metal oxide (TiO2 and SiO2) yolk–shell structures have been successfull...

متن کامل

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

One-dimensional molybdenum dioxide-carbon nanofibers (MoO2-CNFs) were prepared using an electrospinning technique followed by calcination, using sol-gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmet-Teller (BET) surface area measur...

متن کامل

An N-doped three dimensional flexible carbon/sulfur cathode for lithium sulfur battery design.

Nitrogen-doped flexible carbon foam was used to fabricate a lithium sulfur battery. The stability and rate performance of the battery were evaluated. The battery with carbon foam calcined at 800 °C displayed superior stability compared with other tested batteries. Battery performance was closely related to the foam structure and component. However, good rate performance was achieved with the fo...

متن کامل

High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries

Although sulfur has a high theoretical gravimetric capacity, 1672mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low massloading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conductingagent integration is critically important. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014